Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway
نویسندگان
چکیده
Background Sevoflurane post-conditioning exerts nerve-protective effects through inhibiting caspase-dependent neuronal apoptosis after a traumatic brain injury (TBI). Autophagy that is induced by the endoplasmic reticulum stress plays an important role in the secondary neurological dysfunction after a TBI. However, the relationship between autophagy and caspase-dependent apoptosis as well as the underlying nerve protection mechanism that occurs with sevoflurane post-conditioning following a TBI remains unclear. Methods The Feeney TBI model was used to induce brain injury in rats. Evaluation of the modified neurological severity scores, measurement of brain water content, Nissl staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to determine the neuroprotective effects of the sevoflurane post-conditioning. Both immunofluorescence and Western blot analyses were used to detect the expression of autophagy-related proteins microtubule-associated protein 1 light chain 3-II and Beclin-1, pro-apoptotic factors, as well as the activation of the phosphatidylinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway within the lesioned cortex. Results Autophagy and neuronal apoptosis were activated in the lesioned cortex following the TBI. Sevoflurane post-conditioning enhanced early autophagy, suppressed neuronal apoptosis, and alleviated brain edema, which improved nerve function after a TBI (all P < 0.05). Sevoflurane post-conditioning induced the activation of PI3K/AKT signaling after the TBI (P < 0.05). The neuroprotective effects of sevoflurane post-conditioning were reversed through the autophagy inhibitor 3-methyladenine treatment. Conclusion Neuronal apoptosis and the activation of autophagy were involved in the secondary neurological injury following a TBI. Sevoflurane post-conditioning weakened the TBI-induced neuronal apoptosis by regulating autophagy via PI3K/AKT signaling.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملGYY4137 a H2S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/Akt pathway
Objective(s): The current study was aimed to investigate the effect of morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) on ipsilateral epididymis injury in a rat model of experimental varicocele (VC).Materials and Methods: Sixty Wistar rats were randomly assigned to sham, sham plus GYY4137, VC and VC plus GYY4137...
متن کاملNotoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway
Injury to terminally differentiated podocytes contributes ignificantly to proteinuria and glomerulosclerosis. The aim of this study was to examine the protective effects of notoginsenoside R1 (NR1) on the maintenance of podocyte number and foot process architecture via the inhibition of apoptosis, the induction of autophagy and the maintenance pf podocyte biology in target cells. The effects of...
متن کاملSalidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury
BACKGROUND Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the pho...
متن کاملPost-Injury Treatment with 7,8-Dihydroxyflavone, a TrkB Receptor Agonist, Protects against Experimental Traumatic Brain Injury via PI3K/Akt Signaling
Tropomyosin-related kinase B (TrkB) signaling is critical for promoting neuronal survival following brain damage. The present study investigated the effects and underlying mechanisms of TrkB activation by the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) on traumatic brain injury (TBI). Mice subjected to controlled cortical impact received intraperitoneal 7,8-DHF or vehicle injection 10 min post-...
متن کامل